Stability analysis of a non-singular fractional-order covid-19 model with nonlinear incidence and treatment rate

نویسندگان

چکیده

Abstract In this paper, a non-singular SIR model with the Mittag-Leffler law is proposed. The nonlinear Beddington-DeAngelis infection rate and Holling type II treatment are used. qualitative properties of discussed in detail. local global stability analyzed. Moreover, some conditions developed to guarantee asymptotic stability. Finally, numerical simulations provided support theoretical results used analyze impact face masks, social distancing, quarantine, lockdown, immigration, disease, limitation resources on COVID-19. graphical show that effective rates significantly reduce infected population over time. contrast, availability raises population.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability analysis of fractional-order nonlinear Systems via Lyapunov method

‎In this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of Lyapunov‎ ‎method‎. ‎To examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

Stability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function

       In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...

متن کامل

Stability Analysis of a Fractional Order Model of HIV virus and AIDS Infection in the Community

In  this  paper a  non-linear  model  with  fractional  order  is  presented  for  analyzing  and  controlling the  spread  of  HIV virus.  Both  the  disease-free  equilibrium and the endemic equilibrium are  found  and  their  stability is  discussed. The basic reproduction number , which is a function of the constant parameters in the model, plays an essential  role in the stability of  the ...

متن کامل

stability analysis of fractional-order nonlinear systems via lyapunov method

‎in this paper‎, ‎we study stability of fractional-order nonlinear dynamic systems by means of lyapunov‎ ‎method‎. ‎to examine the obtained results‎, ‎we employe the developed techniques on test examples‎.

متن کامل

Stability of a nonlinear non-autonomous fractional order systems with different delays and non-local conditions

* Correspondence: [email protected] Faculty of Science, Alexandria University, Alexandria, Egypt Full list of author information is available at the end of the article Abstract In this paper, we establish sufficient conditions for the existence of a unique solution for a class of nonlinear non-autonomous system of Riemann-Liouville fractional differential systems with different constant delay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica Scripta

سال: 2023

ISSN: ['1402-4896', '0031-8949']

DOI: https://doi.org/10.1088/1402-4896/acbe7a